Lifting Nullstellensatz to Monotone Span Programs over Any Field

نویسندگان

  • Toniann Pitassi
  • Robert Robere
چکیده

We characterize the size of monotone span programs computing certain “structured” boolean functions by the Nullstellensatz degree of a related unsatisfiable Boolean formula. This yields the first exponential lower bounds for monotone span programs over arbitrary fields, the first exponential separations between monotone span programs over fields of different characteristic, and the first exponential separation between monotone span programs over arbitrary fields and monotone circuits. We also show tight quasipolynomial lower bounds on monotone span programs computing directed st-connectivity over arbitrary fields, separating monotone span programs from non-deterministic logspace and also separating monotone and non-monotone span programs over GF (2). Our results yield the same lower bounds for linear secret sharing schemes due to a known relationship between monotone span programs and linear secret sharing developed by Karchmer and Wigderson [32] and Beimel [7]. To prove our characterization we introduce a new and general tool for lifting polynomial degree to rank over arbitrary fields, generalizing a result of Sherstov [43].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating the Power of Monotone Span Programs over Different Fields

Monotone span programs are a linear-algebraic model of computation. They are equivalent to linear secret sharing schemes and have various applications in cryptography and complexity. A fundamental question is how the choice of the field in which the algebraic operations are performed effects the power of the span program. In this paper we prove that the power of monotone span programs over fini...

متن کامل

On the Size of Monotone Span Programs

Span programs provide a linear algebraic model of computation. Monotone span programs (MSP) correspond to linear secret sharing schemes. This paper studies the properties of monotone span programs related to their size. Using the results of van Dijk (connecting codes and MSPs) and a construction for a dual monotone span program proposed by Cramer and Fehr we prove a non-trivial upper bound for ...

متن کامل

Construction of Multiplicative Monotone Span Program

Multiplicative monotone span program is one of the important tools to realize secure multiparty computation. It is essential to construct multiplicative monotone span programs for secure multiparty computations. For any access structure, Cramer et al. gave a method to construct multiplicative monotone span programs, but its row size became double, and the column size also increased. In this pap...

متن کامل

Verification of composite Galois field multipliers over GF ((2m)n) using computer algebra techniques

Galois field computations abound in many applications, such as in cryptography, error correction codes, signal processing, among many others. Multiplication usually lies at the core of such Galois field computations, and is one of the most complex operations. Hardware implementations of such multipliers become very expensive. Therefore, there have been efforts to reduce the design complexity by...

متن کامل

Finite field Nullstellensatz and Grassmannians

Let X C ]p'N be a projective variety defined over the Galois field GF(q). Denote by X(q) the set of GF(q)-rational points of X. Let k be an integer. We say that the pair (X, X(q)) satisfies the Finite Field Nullstellensatz of order k, (the FFN(k), for short), if every homogeneous form of degree :::; k on r N (J<) vanishing on X (q), vanishes on X (J<). Here, we prove the Finite Field Nullstelle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017